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Abstract

We present parallel direct (DNS) and large-eddy simulations (LES) of wall-

bounded turbulence and of 
ow-structure interactions involving cables, beams,

and 
exible eels. We analyze the results by constructing low-dimensional mod-

els for these 
ows based on extraction of appropriate eigenfunctions from the

full simulations.

The main results this year include:

� A new drag reduction technique based on traveling waves (work published

in Science [1]).

� A spectral vanishing viscosity method and dealising algorithms that allow

simulations at high Reynolds number.

� Visualization of vortex dislocations and vortex splits in shear 
ows past

vibrating 
exible beams.

1 Technical Approach

All simulations are based on the parallel code N"�T �r , which is a C++/MPI im-

plementation of the multi-resolution spectral/hp element method. In the spectral/hp
method, convergence can be obtained by either h-re�nement or p-re�nement. Usually

a Galerkin formulation is employed but in more recent work involving compressible

ows a new discontinuous Galerkin method has been followed, which we present brie
y

next.

1.1 Discontinuous Galerkin Methods - DGM

In the last few years, the PI has been supported by DoD agencies to develop new
high-order algorithms for turbulence and other CFD applications as well as for MHD
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simulations. The main result of this work has been the formulation and implemen-
tation of a discontinuous Galerkin algorithm for hyperbolic conservation laws and

for the compressible Navier-Stokes and MHD equations in two- and three-dimensions

on structured and unstructured grids. We have designed DGM as a high-order �-

nite volume method using an orthogonal spectral basis in terms of generalized Jacobi

polynomials [2]. The main features of DGM are:

� It is a high-order �nite volume method.

� It is 
ux-based and thus conservative by construction.

� It is L2-stable (theoretical proof) and thus does not require explicit limiters.

� It is matrix-free as the trial basis is orthogonal-spectral and this leads to high

eÆciency.

� It uses standard Riemann solvers and this leads to robust simulations.
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Figure 1: Hierarchy of the N"�T �r code. Note that \2:5d" refers to a three-
dimensional capability with one of the directions being homogeneous in the geome-

try. Also, ALE refers to moving computational domains required in dynamic 
ow-

structure interactions. The two-
uid MHD refers to a formulation for non-equilibrium

plasma.

1.2 The N"�T �r Code

The DGM algorithms have been integrated in the C + +=MPI code N"�T �r ,

which is a general purpose parallel code for simulating incompressible, compressible

and plasma 
ows in unsteady three-dimensional geometries. The major algorithmic



developments are described in [3] and [4] and the capabilities are summarized in �g-
ure 1. The code uses meshes similar to standard �nite element and �nite volume

meshes, consisting of structured or unstructured grids or a combination of both. The

formulation is also similar to those methods, corresponding to Galerkin and discon-

tinuous Galerkin projections for the incompressible and compressible Navier-Stokes

equations, respectively. Field variables, data and geometry are represented in terms

of hierarchical (Jacobi) polynomial expansions [2]; both iso-parametric and super-
parametric representations are employed. These expansions are ordered in vertex,

edge, face and interior (or bubble) modes. For the Galerkin formulation, the required

C0 continuity across elements is imposed by choosing appropriately the edge (and face

in 3D) modes; at low order expansions this formulation reduces to the standard �nite

element formulation. The discontinuous Galerkin is a 
ux-based formulation, and all
�eld variables have L2 continuity; at low order this formulation reduces to the stan-

dard �nite volume formulation. This new generation of Galerkin and discontinuous
Galerkin spectral/hp element methods implemented in the code N"�T �r do not

replace but rather extend the classical �nite element and �nite volumes that the CFD
practitioners are familiar with [2]. The additional advantages are that convergence of

the discretization and thus solution veri�cation can be obtained without remeshing

(h-re�nement), and that the quality of the solution does not depend on the quality
of the original discretization. In �gure 1 we summarize the major current capabilities
of the general N"�T �r code for incompressible, compressible and plasma 
ows.

1.3 3D Visualization/Steering in Immersive Environments

We have developed new software in collaboration with IBM researchers to exploit the
capability provided with our immersive facility (CAVE). Speci�cally, N"�T �r has

been interfaced with new software that drives the CAVE's 4 walls and creates a fully
immerisve and fully interactive environment. This new software is called JOT, and

it was produced in collaboration with Prof. A. van Dam's group from the Computer

Science Department. In order to combine N"�T �r with JOT, N"�T �r was en-
capsulated into a class using the class constructs available in C++. Within the JOT

software hierarchy, a volume data class was declared. Using the class inheritance

properties of C++, we then created a NEKTARdata class which is an inherited
data type of JOT's volume data class. The NEKTARdata class contained all the

N"�T �r data structures necessary for visualizing N"�T �r �eld data. A collec-
tion of access methods for the NEKTARdata class were written so that JOT could

easily access N"�T �r information while knowing nothing about N"�T �r 's soft-

ware structure. In preliminary work, we have tested the 
ow past a vibrating beam
as an example of 
ow-structure interaction.

1.4 Impact and N"�T �rDistribution

The PI organized with colleagues (B. Cockburn and C.-W. Shu) the �rst International
Conference on Discontinuous Galerkin Methods (May 1999) and edited the Proceed-

ings in a hardbound book (Springer-Verlag), which is the �rst main reference on this



important topic [5]. The work sponsored by DoD agencies (F-15 electro-magnetic sim-
ulation) was selected to be on the cover of the Springer-Verlag book; also our work on

DNS of 
ow past a 
exible 3D wing was on the cover of the book on DNS-LES (June

1999) edited by D. Knight and L. Sakell (Kluwer). Work based on the MHD work

led to a new mechanism of suppressing turbulence using an MHD-induced transverse

traveling wave. This work is published in the May 19th (2000) issue of Science (Y.

Du & G.E. Karniadakis), and a related patent is pending.

The code N"�T �r has been distributed to more than one dozen Universities

and Laboratories. Some of them include Kirkland AFB, Boeing, Inc., Berkeley, MIT,

Caltech, Cornell University, Penn State University, CCNY, SUNY Bu�alo, University

of Minnesota, University of Wisconsin, Imperial College, Oxford Computing Labora-
tory, University of Tokyo, University of Bologna, North Carolina University, Florida

State University, Norwegian University of Science & Technology, Sandia Labs, OAK
Ridge Labs, Nielsen, Inc. etc. There is now documentation of the code both for users

as well as developers. This is a C + +=MPI OpenSource code that runs on all
available platforms including clusters of PCs.

2 Drag Reduction Using Transverse TravelingWaves

The control of wall-bounded 
ows in an e�ort to reduce viscous stresses has been
studied since Prandtl �rst used a trip wire to trigger transition in the boundary

layer. In these early experiments, observable decreases in the shear stress at the

wall were produced. Since then, a wide variety of experimental and more recently
numerical studies have been performed to determine eÆcient and feasible control

mechanisms for wall shear stress modi�cation [6]. The development of turbulence
control mechanisms and corresponding shear stress modi�cation depends upon the

observations that organised structures in the near-wall turbulence and friction drag

are inevitably linked [7].
Two key elements of this view have been the discovery of low speed streaks in

turbulent boundary layers as well as the veri�cation of Theodorsen's hypothesis on

the existence of stable three-dimensional vortical structures, called hairpins, in ex-
periments. More speci�cally, vortex pairs (loops), horseshoes or hairpin-like vortices

have been recognised as the dominant 
ow structure in the near-wall region of turbu-
lent boundary layers, and many researchers have colorfully described boundary layers

as a \forest" or a \jungle" of hairpins. In �gure 1 we plot the results of a direct nu-

merical simulation (DNS) for 
ow over a smooth wall. We see that indeed near-wall
turbulence is populated with such hairpin-like structures, and that low speed streaks

are located exactly between the \legs" of these vortex structures.
Turbulence control methods have been developed under the assumption that the

turbulence production cycle could be favourably altered, stabilised, or reduced in

intensity by the manipulation and alteration of low-speed streaks, quasi-streamwise
vortices, the viscous sublayer, or the hairpin-like structures that populate the near-

wall region. To this end, the use of small grooves or riblets mounted on the wall
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Figure 2: Hairpin-like structures and instantaneous streamwise velocity contours for tur-

bulent 
ow over a smooth wall (Re� � 150). Blue colour indicates low-speed streaks and

red colour high-speed streaks; green corresponds to average velocity values.

surface has proved to be e�ective in partially suppressing turbulence and reducing
the drag force by about 5% to 10%. We can also imagine the use of applied near-wall

forces which would act to redistribute the streamwise vorticity present in hairpin-like
structures in an e�ort to modify the shear stress and turbulent momentum transport
at the wall.

We present here results (�rst published in [1]) obtained from the application of

such a force along the spanwise direction acting within the viscous sublayer and

decaying exponentially away from the wall. In particular, the following travelling
wave force is employed

Fz = Ie�y=� sin(
2�

�z

z �
2�

T
t) (1)

where I is the amplitude of excitation, �z is the wavelength (along the span), and T

is the time period. Here �+ = u
�
�=� = 5 (in wall units), where u

�
is the wall shear

velocity and � the kinematic viscosity. The computational domain is a channel, and

the force is acting on the lower wall while the upper wall is una�ected. The Reynolds
number is Re

�
� 150 (based on the wall shear velocity u

�
and the channel half-

width). The size of the computational domain is Lx = 2100�Ly = 300�Lz = 840 in

wall units, in the streamwise, normal and spanwise directions, respectively. The dis-

cretisation is performed with spectral/hp element methods using the codeN"�T �r .

The main e�ect of the action of the travelling wave, when it is e�ective in reducing

the drag force on the controlled wall, is to weaken and in many cases to completely

eliminate the wall streaks. This is shown in �gure 2 that plots instantaneous near-wall
streamwise velocity contours both at the controlled lower wall (bottom) and at the

upper uncontrolled wall (top); these planes are at y+ = 4 away from the walls. We see



that while the upper wall exhibits the familiar turbulence structure consisting of pairs
of high-speed and low-speed streaks with the characteristic spacing of about 100 wall

units, no such pairs can be found near the controlled surface. Instead, a wide \ribon"

of low-speed velocity is formed in the region where the streamwise vorticity achieves

positive values at the same instance (plot not shown here). This is a signi�cant new

�nding, in view of the fact that streaks and streak spacing are usually diÆcult to

alter even in cases where a very large amount of drag reduction has been obtained.
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Figure 3: Instantaneous 
ow visualisations of wall streaks. Top: no-control; Bottom:

Travelling wave excitation corresponding to I = 1, �+z = 840 and T+ = 50; L+z = 840. Blue

colour indicates low-speed streaks and yellow-red high-speed streaks.
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Figure 4: Instantaneous streamwise velocity contours near a wall mounted with riblets.

L+z = 200. Blue colour indicates low-speed streaks and yellow-red high-speed streaks.

In order to contrast this �nding with the turbulence structure resulted from other

drag reducing techniques, we plot in �gure 3 the wall streaks visualised in simulations
of turbulent 
ow over streamwise riblets. Although a drag reduction of 5% is achieved

in this case, the lateral spacing of the streaks does not change but the streaks appear



more elongated compared to the uncontrolled case. For a di�erent shape of riblets, the
so-called \vee design", a larger amount of drag reduction is achieved with the spacing

of the streaks increased by about 10%. Similarly, if instead of a travelling wave an

oscillatory 
ow along the spanwise direction is imposed by a force similar to the one

described in equation (1) a drag reduction of 30% is achieved at the optimum period

T+
� 100. However, the wall streaks are still present, as shown in �gure 4, but they

are inclined with respect to the 
ow direction due to the spanwise 
ow component. In
both cases, despite these obvious modi�cations the fundamental structure of near-wall

streaks and hairpins remains the same unlike the travelling wave excitation, where

no wall streaks or hairpin vortices can be found.
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Figure 5: Streamwise velocity contours near a wall controlled by an oscillatory force along

the spanwise direction; T+ = 100. L+z = 840. Blue colour indicates low-speed streaks and

yellow-red high-speed streaks.

We now turn to the quanti�cation of the corresponding drag reduction obtained
from suppressing the near-wall turbulence via a travelling wave. We have found

via systematic DNS experimentation that the speci�c waveform, i.e. the parameters

T; �z; I, are critical in obtaining turbulence suppression and correspondingly drag
reduction. For example, for cases with I = 1;�+z = 840 and T+ = 100; 50 and 25,

drag reduction of approximately 30% is obtained for T+ = 50, and 15% for T+ = 25,

while the drag force is increased for T+ = 100. This last result is rather surprising if

we compare it with the oscillatory 
ow along the span. In the latter case, the time

period T+
� 100 leads to largest amount of drag reduction, whereas in the travelling

wave case T+ = 50 gives the maximum drag reduction among the three cases. This

�nding points to the fact that the underlying mechanism is fundamentally di�erent

between the two cases. Speci�cally, the former is related to the action of the Stokes

layer while the latter can best be explained with the stabilisation of the near-wall

streaks and the recent theories on regeneration mechanisms of near-wall turbulence.

Another signi�cant di�erence between these two cases is that in the oscillatory 
ow
the amount of drag reduction is increased as the amplitude of excitation I increases,

unlike the travelling wave excitation where this is not the case.

The �nding regarding the amplitude suggests that the energetics are more favourable
for the travelling wave excitation. Furthermore, we have found that it is the total

amount of energy input that is critical in suppressing turbulence, and this can be

expressed by the product I � T+. Evidence for such criterion is provided in �gure
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Figure 6: Drag force time-history for �+z = 840. Time is in convective units.

5, where we plot the time history of drag force normalised with its initial no-control
value. Also, included in the plot is the normalised drag force on the upper (no-control)
wall which oscillates around unity. In the plot, the curve that corresponds to T+ = 50

and I = 0:5 is very close to the curve corresponding to T+ = 25 and I = 1, and both
curves are for the same total energy input. To further test this hypothesis, we set

I = 2 for T+ = 25 and I = 1 for T+ = 50 at time = 50, and continue the simulation.

Now both cases have the same energy input as the case shown by the lowest curve
in the plot, which corresponds to I = 1;T+ = 50. We can see that there is a sudden

decrease in the drag force at the beginning and eventually both curves follow each
other closely towards the lowest curve in the plot. Of course, not every combination

of (I; T+) will result in drag reduction. For example, we have carried out a simulation
with I = 0:25 and T+ = 200 which led to a drag increase. This means that we �rst
have to �nd the appropriate range of frequency, and subsequently to optimize the

eÆciency of this control mechanism.
In applications, it is not always possible to induce a perfect wave as the one

produced in the current DNS. Moreover, from the eÆciency point of view it is better

to produce a travelling wave motion by discrete actuators that are sparsly distributed

on the wall surface. In these cases, it is clear that an approximate travelling wave

is produced, and the question is if such non-ideal excitation also suppresses wall
turbulence. We have performed several DNS experiments to investigate this question
. We found that the same result is obtained, i.e. drag reduction of about 30%, but

the excitation frequency needs to be higher as the \e�ective" wavelength is smaller.

This, in turn, suggets the importance of the phase speed of the travelling wave, which

has to be above a certain value, e.g. at least one-third of the free-stream velocity, in

order to be e�ective in suppressing turbulence. Another parameter that determines

the net amount of drag reduction is the penetration length � in equation (1). By



increasing its value, a larger amount of drag reduction is achieved but for � much
larger than the viscous sublayer a drag increase is obtained.

3 Flow-Structure Interactions

The main runs for this part include:

� Flow past long cables and beams subject to vortex-induced-vibrations (VIV)

(see �gures 7 and 8), and

� Flow past nonlinear cables and other nonlinear structures, (see �gure 9).

The work under the previous grant has been published in [8, 9, 10, 11, 12] and [13,

14, 10, 15, 16, 17, 18], and has supported the Ph.D. theses of Evangelinos (1999), Kirby
and Lucor (in progress). More speci�cally, the following algorithmic and simulation

milestones were achieved.
            

Figure 7: Comparison of DNS with 
ow visualizattions of Williamson.



            

Figure 8: E�ect of vortex dislocations on the drag coeÆcient. The middle plot is
the sectional CD away from the dislocations and the other two plots correspond to

di�erent intensity dislocations along the span. Re = 1; 000.

3.1 Shear In
ow - Linear Sructures

We have simulated VIV of cables in the turbulent regime subject to very strong

shear in
ow for cables up to 1000 cable diameters. This is the �rst time that such

realistic conditions both for laboratory experiments as well as for �eld experiments
are simulated.

In the �rst case, we made comparisons with the experiments of Williamson on

vortex dislocation (see �gure 7) and with the experiments of Trintafyllou on vortex

splits. For �eld experiments, we have made comparisons with data of Chevron and

data of Norsk Hydro. A new �nding that has not been observed before in either

laboratory or �eld experiments is the e�ect of vortex splits and dislocations on the

drag coeÆcient. In �gure 8 we plot the time histories of the drag coeÆcient at one

station close to a vortex dislocation and at another two stations away from it. We

see that the result of vortex dislocations (also vortex splits) on the structure's forces

is indeed dramatic.



            

            

Figure 9: Nonlinear cable subject to VIV: Variable tension (top) and axial displace-

ment oscillations.



3.2 Nonlinear Structures

We have developed fully nonlinear models for cables and beams and have obtained

results for VIV of nonlinear cables (see �gure 9). We initially used a small mesh and

investigated the e�ect of non-zero initial conditions with small and large variations in

tension. We observed that the latter lead to a breakdown of most large features in the
structural response and induce large pressure oscillations in the 
ow. We also observed

small scale temporal oscillations in the lift and spanwise forces due to the minimalist

features of the mesh. In the case of the initial condition with small variations in

tension we observed persistent standing wave patterns for the displacement in the

cross-
ow direction and the drag coeÆcient. The spanwise displacement (and large
scale features in the spanwise force distribution) exhibited a di�erent type of time-

periodic pattern, related to a standing wave. The 
ow structures observed in the

wake were qualitatively similar to the ones seen in simulations with linear structural
models that had a standing wave response.

In order to address some of the problems with these calculations we started a calcu-

lation using a much large and more re�ned mesh, starting from zero initial conditions
for our structure and letting the 
ow drive the motion. Boundary e�ects became

quickly visible in the hydrodynamic force distributions and the structure exhibited
longitudinal vibrations and increase in tension in the �rst 10 non-dimensional time
units. These simulations exhibit a breaking of the symmetry about the mid-span,

and it has been free of the pressure oscillations that appeared in the smaller domain
calculations.
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Figure 10: Velocity pro�les (left) and energy spectrum (right) in the near-wake of tur-
bulent 
ow past a cylinder. The 3D simulations were obtained with N"�T �r and

show good agreement with the experimental data of Lurenco & Shih (1993) for veloc-
ity pro�les and Ong & Wallace (1996) (thick line) for spectrum. The inertial range

exhibits the Kolmogorov universal law.



3.3 Comparison with Experiments

We have perfomed several comparisons with the experiments for both moving and

stationary cylinder but one that stands out, as it de�nes the state-of-the-art in the

DNS and LES �eld, is 
ow past a cylinder in the turbulent regime. The comparison

is shown in �gure 10 that plots results from a three-dimensional simulation of turbu-
lent 
ow past a 3D cylinder at Re = 3; 900. The results are taken from [13] where

more details can be found. From the spectrum plot we see that the best agreement

is obtained at the small scales represented by the inertial range (i.e., high wave num-

bers), which are independent of the details of boundary conditions. However, there

is some disagreement in the large scales as those depend on the in
ow boundary con-
ditions which in the experiment are close to uniform in
ow but within some (�nite)

variance. This, therefore, is a case that can be simulated realistically with stochastic

spectral/hp element method next year as it will include the uncertainty associated
with the assumption of uniform in
ow.
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Figure 11: Normalized viscosity kernels for the spectral vanishing viscosity (dash line

denotes the accuracy barrier, and solid line denotes the stability barrier) and the

Kraichnan/Chollet-Lesieur viscosity (dash-dot line). Note that classical eddy-viscosity mod-

els dissipate even at the energetic scales (low modes) modifying erroneously the 
ow �eld.

3.4 Spectral Vanishing Viscosity: SVV-LES

An important development during the course of the previous grant was the formu-

lation of a spectral vanishing viscosity (SVV) method. This is a new approach to

control unresolved scales (high-modes) of the 
ow, which are explicitly constructed

as the spectral/hp element method is hierarchical. In particular, a second-order vis-

cosity convolution operator was constructed that is activated for the high modes unlike

the classical LES approach where all modes are a�ected (see �gure 11). This method



was motivated by the work of Tadmor [19] for nonlinear conservation laws for spec-
tral methods. It is appropriate for incompressible 
ow simulations and no �ltering

is involved in the formulation. This method resolves the apparent con
ict that ex-

ists between the formal accuracy of the numerical method and monotonicity, i.e.,

the implicit or explicit viscosity added in LES to control the energy of high modes.

Speci�cally, the theory provides limits below which the spectral accuracy of the m

ethod is not preserved and above which stability is not guaranteed (see �gure 11).
Several benchmark simulations have been performed, e.g. incompressible turbulent

channel 
ow at R
�
= 180 and R

�
= 395 that validate the theory [15]. One drawback

of the current implementation, which we will address in the future, is that the method

is not implicitly adaptive as in the standard eddy-viscosity LES models. In summary,

the main features of the SVV-LES approach are:

� It is based on nonlinear theory unlike other LES approaches that lack rigorous
theoretical justi�cation.

� It is monotonicity preserving and thus it prevents erroneous oscillations.

� It maintains spectral accuracy.

� No explicit �ltering is needed.

� The convolution operator is second-order and thus it is appropriate for �nite-
element formulations, unlike the hyper-viscosity kernels proposed by other re-

searchers.

� It is an eÆcient approach as the overhead for the SVV implementation is a small

fraction of what is required for the standard Smagorinsky LES implementation.

3.5 ALE-Graph Algorithm
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Figure 12: Graph showing vertices with associated velocities and edges with associated

weights.

The grid velocity is arbitrary in the Arbitrary-Lagrangian-Eulerian (ALE) formu-

lation we employ for 
ow-sttructure interactions. Therefore, great latitute exists in



the choice of technique for updating it. Mesh constraints such as smoothness, con-
sistency, and lack of edge crossover, combined with computational constraints such

as memory use and eÆciency dictate the update algorithm used. In our work, we

address the problem of solving for the mesh velocity in terms of its graph theory

equivalent problem. Mesh positions are obtained using methods based on a graph

theory analogy to the spring problem. Verticies are treated as nodes, while edges

are treated as springs of varying length and tension. At each time step, the mesh
coordinate positions are updated by equilibration of the spring network. Once the

new vertex positions are calculated, the mesh velocity is obtained through di�erences

between the original and equilibrated mesh vertex positions.

Speci�cally, we incorporate the idea of variable di�usivity while maintaining com-

putational eÆciency by avoiding solving full Laplacian equations. The method we use
for updating the mesh velocity is a variation of the barycenter method [20] and relies

on graph theory. Given the graph G = (V,E) of element vertices V and connecting
edges E, we de�ne a partition V = V0 [V1 [V2 of V such that V0 contains all vertices

aÆxed to the moving boundary, V1 contains all vertices on the outer boundary of the
computational domain, and V2 contains all remaining interior vertices. To create the

e�ect of variable di�usivity, we use the concept of layers. As is pointed in [21], it is

desirable for the vertices very close to the moving boundary to have a grid velocity
almost equivalent to that of the boundary. Hence, locally the mesh appears to move
with solid movement, whereas far away from the moving boundary the velocity must

gradually go to zero. To accomplish this in our formulation, we use the concept of
local tension within layers to allow us to prescribe the rigidity of our system. Each

vertex is assigned to a layer value which heuristically denotes its distance from the

moving boundary. Weights are chosen such that vertices closer to the moving bound-
ary have a higher in
uence on the updated velocity value. To �nd the updated grid

velocity ug, at a vertex v 2 V2, we use a force-directed method. Given a con�guration
as in �gure 12, the grid velocity at the center vertex is given by:

ug =
deg(v)X

i=1

�l
iui;

deg(v)X

i=1

�l
i = 1;

where deg(v) is the number of edges meeting at the vertex v and �l
i is the lth layer

weight associated with the ith edge. This is subjected to the following constraints:

ug = 0 (8v 2 V1), and ug (8v 2 V0) is prescribed to be the wall velocity. This
procedure is repeated for a few cycles following an incomplete iteration algorithm,

over all v 2 V2. (Here by incomplete we mean that only a few sweeps are performed

and not full convergence is sought.) Once the grid velocity is known at every vertex,

the updated vertex positions are determined using explicit time-integration of the

newly found grid velocities. An example is shown in �gure 13.
In summary, the following are the main features of the ALE-Graph formulation:

� It introduces an \arbitrary" mesh velocity into the variational formulation for

the governing equations.

� It reduces to a Lagrangian description at the moving structure and Eulerian

description at the stationary regions.



The ALE Grid Velocity Algorithm

Graph Theory: Force Directed Method in Velocity Space
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Figure 13: Variable tension layering for the graph edges (bottom) and result of the classical

smoothing (top left) versus the graph-based velocity grid algorithm (top right).



� It computes a mesh velocity for the vertices only (not the interior points of a
spectral element) using a variable tension/sti�ness force-directed graph-based

method that is eÆcient.

4 Hardware Comparison

Serial and parallel algorithms for unstructured grids were tested based on theN"�T �r

code. For the serial algorithms, two-dimensional spectral/hp element simulations were

run to evaluate the single node performance of the various platforms. Parallel ma-

chine capability was tested through the use of the 21=2D N"�T �r -F code. We

have limited our study to using at most four processors so that we could include com-
parisons with a local 4 PC Linux Cluster. Due to this choice, our parallel algorithm

based on geometric domain decomposition for fully three-dimensional inhomogeneous

ows was not tested because it is not applicable to use four processors for fully 3d
DNS since in general four processors cannot accommodate meshes currently used for

turbulence simulation of realistic domains.

Comparisons between seven machines are made, namely:

� Cray T3E-900, composed of 816 processor nodes. Each processor runs at 450

MHz and total available memory is 258 GB.

� IBM SP, composed of 211 RS/6000 P2SC nodes. Each node has a single 160

MHz with 256 Mb of memory per node. All of the nodes are connected via a

high-speed switch.

� IBM SP2, composed of 24 Thin 2 Nodes. Each node has a single 66MHz Power2
processor and 128Mb of memory.

� Silicon Graphics Onyx2 In�nite Reality, with 2GB of memory and 4 195MHz

R10000 processors.

� Fujitsu AP3000 with 28 UltraSPARC 300MHz single processor nodes, each hav-

ing 256 MBytes per node, connected via a dedicated high-speed network (AP-

Net).

� IBM SP with 24 RS/6000 Model F50 (Silver) nodes, with 1GB memory per

node and four 604e Power PC 332 MHz processors per node.

� Cluster of 4 PCs, each PC with an Intel 450MHz Pentium II processor. Each

PC has 384MB 100MHz synchronous DRAM, 512K pipelined burst cache and

an Ultra ATA hard drive. The network connection uses the Adaptec Quad

10/100TX PCI ANA-6944A, Pentium II optimised. The Mandrake Linux 5.3

distribution, upgraded to the 2.2.5 kernel (and associated modules) is used.



DNS/Serial algorithms

In order to evaluate the single node performance ofN"�T �r with serial algorithms,

two-dimensional simulations are performed. For the blu� body 
ow simulation bench-

marked, 60,000 degrees of freedom were used. Maximum CPU times per time step

are shown in Table 1, calculated with the call, clock().

Table 1: CPU time for serial algorithm blu� body 
ow simulation.
Machine CPU time (seconds) / time step

Fujitsu AP3000 1.25

SGI Onyx 2 1.04

PC 0.81

SP2 \Thin2" nodes 1.45

SP \Silver" nodes 1.29
SP \P2SC" nodes 0.71
T3E 0.82

From table 1 we see that the P2SC node outperforms all other platforms tested

for single CPU performance, being over 10% faster than the nearest competitor, and
almost twice as fast as the slowest machine tested (SP2 Thin 2). In second place,
we see that both the Pentium II and Cray T3E perform well, both being 20% faster

than the next competitor, the Onyx 2. It is interesting to note that both the PC
and T3E are running at 450 Mhz, hence with this particular test case we see what

appears to be a Mhz to Mhz comparison between the two machines for single CPU
performance. In more recent comparisons for a larger 2D similar problem

involving 330,000 degrees of freedom we obtained the following timings

per time step:

� Athlon (600 MHz): 1.2 sec

� Power3 (200 MHz): 1.2 sec

� Compaq 2164 (750 MHz): 0.63 sec

� T3E (450 MHz): 1.78 sec

� Pentium II (450 MHz): 1.74 sec.

DNS/Parallel algorithms

Parallel tests were run usingN"�T �r -F. Each processor computes a certain number

of Fourier modes. Typically, one processor is assigned to one Fourier mode which
corresponds to two physical degrees of freedom, de�ning two spectral/hp element

planes. Therefore, if four Fourier modes are used for resolving the homogeneous

directions, then there are eight spectral/hp element planes. Increasing the resolution



in the homogeneous direction, i.e. increasing the number of Fourier planes can be
accomplished without increasing the amount of memory required per processor if the

number of processors is increased. We present wall clock times for a four CPU parallel

simulation having 460,000 degrees of freedom.

Table 2: Wall Clock time for 4 Processor parallel algorithm applied to a blu� body

ow simulation.

Machine Wall Clock time (seconds) / time step

Fujitsu AP3000 4.45

SGI Onyx 2 4.64
PC 6.20

SP2 \Thin2" nodes 6.07
SP \Silver" nodes 5.73

SP \P2SC" nodes 3.11

T3E 3.02

For the code used to obtain the numbers presented in table 2, the main types

of communication patterns used are: Global Exchanges (All-to-All), Global Reduc-
tion/Gather operations (addition, min, max) and Global Synchronization. Hence our

analysis compares parallel performance based on machine wide operations.

For parallel performance, the T3E and IBM P2SC compare favorably with each
other when comparing four CPU wall clock times. These two machines are reasonably

ahead of all other platforms tested. Comparing the IBM SP P2SC nodes with the

slowest machines, the PC Cluster and the IBM SP2 Thin-2 nodes, we �nd that the
P2SC nodes and T3E nodes give us almost a factor of two speedup.

Scalability

Due to the algorithmic design of the N"�T �r -F code, we achieve almost perfect

problem size scalability. In the case that more Fourier planes are needed for resolution
in the homogeneous direction, additional processors can be used with little overhead.

In addition to the results presented above, we have obtained performance results
for larger numbers of processors for a few speci�c cases. When comparing the P2SC

nodes to the Thin-2 nodes on 16 processor jobs, we �nd that the P2SC nodes continue

to give us a speedup of two based on wall clock time. Comparing the T3E-900 against
the 195 MHz Origin 2000, we �nd that for 88 processor ALE simulations the T3E

provides us with approximately a 20% speedup.

A very recent result from simulations of turbulent wakes formed in 
ow past a

cylinder is shown in �gure 14. All simulations were performed at MHPCC under

dedicated computer time. There are about 20,000 dofs per Fourier plane and the
total number of dofs increase linearly with the number of processors, so here we test

the scaled parallel eÆciency of the system.
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processors increase so here we compare the scaled eÆciency of the two systems.
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